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LE'ITER TO THE EDITOR 

Onset of bulk behaviour in a finite-thickness slab 

Guozhong An and M Schick 
Department of Physics, FM-15, University of Washington, Seattle, WA 98195, USA 

Received 21 October 1987 

Abstract. The behaviour of an Ising antiferromagnet which is known to undergo a con- 
tinuous transition in two dimensions and a first order transition in three is considered in 
a slab geometry of finite thickness. We note that the phase behaviour is intimately related 
to the surface boundary conditions which govern wetting. For the interesting case in which 
wetting phenomena are not important, we find that the bulk behaviour is already manifest 
when the slab is only eleven layers thick. 

Given a system which is known to undergo a continuous transition in two dimensions, 
and a first-order transition in three, what sort of transition will a finite-thickness slab 
of the material undergo? This question has application to films of numerous materials 
which display common types of ordering transitions between solid and liquid phases, 
paramagnetic and ferromagnetic phases [ 11 or other related states. Shnidman and 
Domany [ 13 considered the question and argued as follows. If the three-dimensional 
transition had been continuous so that the bulk correlation length 6 diverged as the 
bulk transition temperature was approached, then the finite thickness of the slab would 
become apparent at a temperature at which this correlation length was comparable to 
the thickness of the slab; a continuous transition, characteristic of the two-dimensional 
model, would then occur. However, as the bulk transition is first order, the correlation 
length never diverges, but attains some finite value [ ( T J  at the bulk transition tem- 
perature T,. This establishes for the slab a characteristic width, L" = [( T J ;  for 
thicknesses L > L", the system behaves like bulk and a first-order transition is expected, 
while for L < L", it acts two dimensionally and a continuous transition should occur. 
A tricritical point, also characteristic of the two-dimensional system, separates the two 
regimes. This analysis was supported by an approximate position space renormalisation 
group calculation on a three-state Potts model which did indeed produce such a 
crossover in the order of the transition, but could only place the characteristic thickness 
within a very large range, 2' < L" < 2". 

It must be noted that both the analysis and calculation of Shnidman and Domany 
ignore surface effects related to wetting phenomena [ 2 ] ,  effects which can completely 
alter their scenario. For example, suppose that the slab were semi-infinite and that 
the boundary conditions at the surface of the slab were such that, as coexistence 
between bulk phases was approached from the disordered side by decreasing some 
field or chemical potential, the ordered phase wet the surface. At a sufficiently low 
temperature, this complete wetting would proceed via distinct first-order layering 
transitions, while at higher temperatures it would proceed continuously. In a finite 
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slab with the same boundary conditions at both surfaces, one expects the ordered 
phase to appear in just the same way. At low temperatures, the ordered state would 
appear via a series of layer transitions beginning at the surfaces and working inward 
until the entire slab was ordered; at higher temperatures, the order would propagate 
continuously from the surfaces. Thus the Shnidman-Domany scenario, in which the 
entire slab undergoes either one continuous or first-order transition, can occur only 
with boundary conditions such that complete wetting of the surface of the semi-infinite 
slab by either phase does not take place. Even if these conditions are met, there can 
be a modification of the scenario in which a few surface layers undergo their own 
transitions, followed by all the rest of the layers which make a single transition. 

We have investigated a system which displays continuous and first-order transitions 
in two and three dimensions respectively and which lends itself to study by means of 
the cluster variational method (CVM) [3]. In addition to its relative simplicity, the CVM 
has the virtue that effects of the surface, omitted in [l] ,  can be included (see e.g. [4]). 
The system consists of Ising spins, U, located on the sites of a slab of a face-centred 
cubic lattice, which interact antiferromagnetically with their nearest neighbours. The 
Hamiltonian is 

X = - J  1 u ~ u ~ - H C U ,  
(id I 

where J < O ,  and the first sum is over nearest-neighbour pairs. The slab is made up 
of L = 21 + 1 (1, 0,O) planes. The transition studied is that from the paramagnetic 
phase, which exists for sufficiently strong uniform external fields H, to the A3B ordered 
phase. In this phase, the spins on one of the four sublattices into which the FCC lattice 
can be decomposed are aligned opposite to the field, while spins on the other three 
sublattices remain aligned with the field. In three dimensions this transition, which 
has the same symmetry as that of the four-state Potts model [ 5 ] ,  is known to be first 
order [6-lo], a result given correctly by the CVM [6-91. On the other hand, a single 
(100) layer of the system has only two of the four sublattices, and the ordered array 
consists of two sets of spins of which one is aligned parallel and the other antiparallel 
to the field. Therefore the transition has the symmetry of the Ising model and will be 
continuous, a result also given by the CVM. This particular system has been chosen 
for study precisely because the relatively simple CVM gives the second- and first-order 
transitions in two and three dimensions and can therefore be expected to show the 
crossover between these behaviours. 

The boundary conditions of the slab are that it has neither additional fields acting 
at the surface nor additional strength in the surface bonds. Under these conditions, 
the completely ordered state of the slab consists in alternating (100) layers of spins; 
the surface layers, and every second layer from them, are paramagnetic having all 
spins aligned with the field. (We assign them layer numbers I ,  I - 2 , .  . . , - ( I - 2 ) ,  - I ,  
where layer 0 is the centre.) The other interleaved layers are antiferromagnetic (layers 
I - 1,I- 3, . . . , - ( I  - 3), - ( I  - 1)) having the two sublattices of spins antiparallel to one 
another. We find that this ordered state is obtained from the pure paramagnetic phase 
via the following sequence of transitions as the external field is reduced at low 
temperatures. At some value, HI( T, I ) ,  layers ( I  - 1) and -(I - l) ,  which are related 
by symmetry, undergo a continuous Ising transition. At a second and smaller value, 
H2( T, I ) ,  layers (I - 3) and -( 1 - 3); also symmetry related, undergo a continuous Ising 
transition. Finally, at a still smaller value, I f 3 (  T, I ) ,  all layers, ( I  - S), ( I  - 7), . , . , 
- ( I  - 7) ,  - ( I  - 5), undergo a single first-order transition, As I + a, I f 3 (  T, I )  + H,( T ) ,  
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the bulk phase boundary. If 1 is sufficiently small, only the relevant portion of this 
sequence will be observed (e.g. for 21+ 1 = 7, layers 2 and -2 make a continuous 
transition at HI and layer 0 at H 2 ) .  Thus, under these surface conditions, we observe 
the kind of scenario envisaged by Shnidman and Domany and can identify the thickness 
L" beyond which the slab evinces bulk-like behaviour to be L" = 11. This is a thin slab 
indeed! 

Our calculation employs the CVM in the tetrahedron approximation [7-9], an 
approximation which gives very good bulk phase boundaries when evaluated by 
comparison [ 10,111 with Monte Carlo simulations [ 101. Because our calculation for 
the slab geometry is rather close to that of [8] for the bulk, our description can be 
brief. The aim of the CVM is to write a tractable approximate form for the entropy in 
terms of the entropies of clusters. These cluster entropies are defined in terms of the 
reduced density matrices pa,  which depend only on the spins contained in the cluster 
a, according to S a / k B =  -Trp,ln(p,), where kB is Boltzmann's constant. In the 
tetrahedron approximation, the entropy of the slab has the form 

(1) s = stetra - Stpair + SStpoint + Ssurfpoint 

where Srpair contains no contribution from pairs in the surface and Stpoint contains no 
contribution from surface points. The parameters which are varied to minimise the 
approximate free energy are the elements of the reduced density matrices, which can 
be viewed as the probabilities of observing various configurations of the cluster when 
in thermodynamic equilibrium. There are sixteen independent configurations of a 
tetrahedron. We do not deal with this number of independent parameters for each 
tetrahedron since it is sufficient for our purposes to study the dimensional crossover 
at a single low temperature. Increasing the temperature merely shifts the location of 
the bulk transition to the A3B ordered state and eventually eliminates it, but does not 
alter its first-order nature when it occurs. We choose, therefore, a temperature, T/(JI = 
0.5, which is low enough that configurations in which more than one spin in a cluster 
is oriented against the external field can be ignored. Due to the loss of translational 
symmetry brought about by the presence of the two parallel and identical surfaces, 
clusters of points in the surface must be distinguished from other points, and pairs 
which lie in the surface from other pairs. The cluster configuration probabilities which 
are needed are as follows: z , , ~  is the probability that, in a tetrahedron between planes 
n and n - 1, a spin on sublattice a which is in the plane n is down, antiparallel to the 
external field?; z, is the probability that, in this same tetrahedron, all spins are up; y ,  
is the probability that both spins are up in a nearest-neighbour pair in the plane n ;  
yn,.,b is the probability that nearest-neighbour spins are up, one spin in plane n on 
sublattice a, the other in plane n - 1 and sublattice b ;  x,,~ is the probability that a spin 
in plane n on sublattice a is up. The probability of observing a single down spin in 
plane n and on sublattice a is independent of the kind of cluster it is in and is equal 
to the previously defined z, ,~.  

The various cluster contributions to the entropy are now written in terms of these 
variables. As the function x ln(x) appears repeatedly, we denote it as L(x). Then 

t The probability that a down spin occurs in this same tetrahedron on a sublattice in the same n - 1 plane 
is clearly equal to z , - , , ~ .  
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where N is the number of sites per plane. It is understood that terms involving sums 
over n from 1 to 1 - 1 are absent if 1 = 1. 

Because the Hamiltonian involves only one- and two-body terms, the thermo- 
dynamic expectation value of the energy can be expressed in terms of the probabilities 
of finding points and pairs in various configurations. One obtains within the approxi- 
mation 

where zi is the sublattice other than a on the specified plane. The free energy within 
the approximation, F = E - TS, is now completely specified by (1)-(6). The number 
of variables on which it depends is reduced to those only of the tetrahedron by the 
use of the property of reduced density matrices pp = Trm-ppm which yields 

y n , o , b  = zn + zn ,d  + z n - l , 6  

X n , o  = Z n . 5  + Y n  

n = 1 , 2 , .  . . , 1 

n = 0 , 1 ,  . . . ,  1. 
Lastly, the tetrahedron variables themselves are constrained by the requirement that 

Z n + C ( Z n , a + Z n - l , a ) = 1  n = 1 , 2  ,..., 1. 
a 

The free energy is minimised, subject to these constraints, by the introduction of 
Lagrange multipliers and the resulting equations are solved numerically by Kikuchi's 
natural iteration method [ 9 ] .  

Results from this procedure are shown in figure 1 in which the values of the magnetic 
fields at which transitions occur at T/IJI = 0.5 in slabs of thicknesses 21 + 1 are shown 
for values of 1 = 0, 1 ,  . . . , 1 1 .  The value for I = 0, a single plane, was calculated via the 
CVM for consistency using a pair as the basic unit. Note that the large difference 
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between the critical values of the magnetic field for a single layer and for any other 
thickness is simply a reflection of the difference between four and twelve nearest 
neighbours. Continuous transitions are shown with circles. At the single first-order 
transition, denoted by a cross, 1 - 4 layers order together. From the figure we see that 
for the surface conditions we have employed (no surface fields or bond enhancement), 
no wetting of the surface of a semi-infinite bulk by either phase would occur. Further, 
under these conditions, the first-order nature of the transition of the three-dimensional 
system already begins to influence the behaviour of the slab when it is only eleven 
layers thick. The only remnant of the continuous nature of the transition of the 
two-dimensional system is the presence of two continuous surface transitions. 

We thank Professor Ryochi Kikuchi for his interest and his comments. One of us 
(MS) is grateful to David Mukamel and Eytan Domany for useful conversations. This 
work was supported by the National Science Foundation under Grant DMR-8613598. 
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